Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 982720, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936919

RESUMO

Introduction: Proteasome inhibition is first line therapy in multiple myeloma (MM). The immunological potential of cell death triggered by defects of the ubiquitin-proteasome system (UPS) and subsequent perturbations of protein homeostasis is, however, less well defined. Methods: In this paper, we applied the protein homeostasis disruptors bortezomib (BTZ), ONX0914, RA190 and PR619 to various MM cell lines and primary patient samples to investigate their ability to induce immunogenic cell death (ICD). Results: Our data show that while BTZ treatment triggers sterile type I interferon (IFN) responses, exposure of the cells to ONX0914 or RA190 was mostly immunologically silent. Interestingly, inhibition of protein de-ubiquitination by PR619 was associated with the acquisition of a strong type I IFN gene signature which relied on key components of the unfolded protein and integrated stress responses including inositol-requiring enzyme 1 (IRE1), protein kinase R (PKR) and general control nonderepressible 2 (GCN2). The immunological relevance of blocking de-ubiquitination in MM was further reflected by the ability of PR619-induced apoptotic cells to facilitate dendritic cell (DC) maturation via type I IFN-dependent mechanisms. Conclusion: Altogether, our findings identify de-ubiquitination inhibition as a promising strategy for inducing ICD of MM to expand current available treatments.


Assuntos
Interferon Tipo I , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/metabolismo , Inibidores de Proteassoma/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Morte Celular Imunogênica , Bortezomib/farmacologia
2.
Cancers (Basel) ; 13(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34439223

RESUMO

Multiple Myeloma (MM) is a malignancy of plasma cells infiltrating the bone marrow (BM). Many studies have demonstrated the crucial involvement of bone marrow stromal cells in MM progression and drug resistance. Together with the BM microenvironment (BMME), epigenetics also plays a crucial role in MM development. A variety of epigenetic regulators, including histone acetyltransferases (HATs), histone methyltransferases (HMTs) and lysine demethylases (KDMs), are altered in MM, contributing to the disease progression and prognosis. In addition to histone modifications, DNA methylation also plays a crucial role. Among others, aberrant epigenetics involves processes associated with the BMME, like bone homeostasis, ECM remodeling or the development of treatment resistance. In this review, we will highlight the importance of the interplay of MM cells with the BMME in the development of treatment resistance. Additionally, we will focus on the epigenetic aberrations in MM and their role in disease evolution, interaction with the BMME, disease progression and development of drug resistance. We will also briefly touch on the epigenetic treatments currently available or currently under investigation to overcome BMME-driven treatment resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...